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Abstract: The formation of azomethine ylides 3 directly from aminoacids and aldehydes and their addition to
Cqo is reported. The method provides a new route to N-unsubstituted fulleropyrrolidines 4a-4g.

Functionalization of fullerenes continues to be a current focus of research leading to the useful
application of fullerene derivatives in biological and materials science.! One of the most important methods
for Cep functionalization involves formation of N-alkyl-fulleropyrrolidines by 1,3-dipolar cycloaddition of
azomethine ylides to Ceo. This reaction was first reported by Prato® and later by some other groups,”* and
has served as an excellent and high yield process for fullerene functionalization.’

Since N-unsubstituted fulleropyrrolidines provide an entry into further functionalized derivatives by
reaction at the nitrogen atom, a pathway to such compounds would be very useful. Prato reported methods
for preparing unsubstituted fulleropyrrolidines employing N-trityl protected glycine as a precusor.>*
Another method, involving the reaction of Cs with an a-aminoester imine was reported by another group.*
We report here the reaction of Cg with azomethine ylides generated directly from aldehydes and amino acids
through a decarboxylation route,® by which N-unsubstituted fulleropyrrolidines were readily obtained in one
step (equation 1 ).
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I H Ceo
RICHO + HN—C—COOH ——= | N —
H R1C/ CHR2
1 ) ©
3

R1=H, Ph ,PhCH2
R2=H, CH3, Ph, PhCH2

Azomethine ylides 3a-g were prepared in situ from aldehydes and amino acids as shown in the Table.
In a typical procedure, 2 equivalents of amino acid 2, 5 equivalents of aldehyde 1, were mixed in toluene

with an equivalent of Ce, and heated at reflux for several hours. The rates of reactions depended upon the
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reactivities of the ylides, and the reactions could be monitored by TLC. Fulleropyrrolidine products were
purified by flash chromatography on silica gel.

Table. Yields and spectroscopic data’® for 1,3-dipolar cycloaddition product 4 (equation 1).

Entry | Compd | R, R, Yield® "H-NMR (2:1 CS,/CDCl, 200 MHz)

1 4a H CH; 20% 4.95 (d, J=12.0Hz, 1H), 4.80 (q, J=6.6Hz, 1H), 4.74 (d
, J=12.0Hz, 1H), 2.10 (d, J=6.6Hz, 3H)

2 4b Ph H 35% 7.83-7.79 (m, 2H), 7.46-7.36 (m, 3H), 5.82 (s, 1H),
5.12 (d, J=10.7Hz, 1H), 4.90 (d, J=10.7Hz, 1H)

3 4b H Ph 26% Same as above

4 4c H PhCH, | 24% 7.50-7.21 (m, SH), 4.93 (d, J=11.1Hz, 1H), 4.90 (dd,

3,=3.1Hz, J,=10.8Hz, 1H), 4.65 (d, J=11.1Hz, 1H),
4.00 (dd, J,=3.1Hz, J,=14.1Hz, 1H), 3.39 (dd,
J,=14.1Hz, J,=11.1Hz, 1H)

5 4d Ph CH; 26% trans | trans: 7.83-7.79 (m, 2H), 7.45-7.33 (m, 3H), 5.86 (s,
1H), 5.01 (g, J=6.4Hz, 1H), 2.18 (d, J=6.4Hz, 3H)
23% cis cis: 7.79-7.76 (m, 2H), 7.45-7.32 (m, 3H), 6.14 (s,
1H), 5.39 (q, J=7.0Hz, 1H), 2.25 (d, I=7.0Hz, 3H)

6 4e Ph PhCH, | 15% trans | trans: 7.86-7.81 (m, 2H), 7.62-7.57 (m, 2H), 7.49-7.32
(m, 6H), 5.71 (s, 1H), 5.04 (dd, J,;=2.7 Hz, J,=11.1Hz,
1H), 4.05 (dd, J,=2.6Hz, J,=13.2Hz, 1H), 3.53 (dd,
J=11.1Hz, J,=13.2Hz, 1H), 2.90 (bs, 1H)

20% cis | cis: 7.84-7.79 (m, 2H), 7.56-7.20 (m, 2H), 6.20 (s,
1H), 5.41 (dd, J,=4.0Hz, J,=11.5Hz, 1H), 4.05 (dd,
3,=11.5Hz, J,=13.6Hz, 1H), 3.72 (dd, J,=4.0Hz,
1,=13.6Hz, 1H), 2.93 (bs, 1H)

7 af Ph Ph 38% 8.06-8.02 (m, 4H), 7.51-7.35 (m, 6H), 6.04 (s, 2H)

8 4g PhCH, |PhCH, | 17%° trans: 7.66-7.10 (m, 10H), 4.80 (dd, J,=3.1Hz,
trans/cis | };=10.5Hz, 2H), 3.93 (dd, J,=3.1Hz, J,=13.5Hz, 2H),
(62/38) 3.38 (dd, J,=10.5Hz, J,=13.5Hz, 2H)

cis: 7.66-7.10 (m, 10H), 5.17 (dd, J,=3.6Hz,
1,=10.8Hz, 2H), 3.74 (dd, J,=3.6Hz, J,=13.4Hz, 2H),
3.54 (dd, J,=11.1Hz, J,=13.5Hz, 2H)

o

Isolated yields.
b The isomers of compound 4g could not be cleanly separated by flash chromatography. (Rs value = 0.23 (¢rarns)
and 0.19 (cis) on Si0;, eluent: 1:1 toluene/hexane).

Those reactions using paraformaldehyde gave relatively low yields compared to reactions with other
aldehydes. Possibly paraformaldehyde reacts with N-unsubstituted fulleropyrrolidines® to produce cross-
linked dimers which precipitate from the reaction mixture. Dimeric fullerene derivatives are barely soluble in
most organic solvents and characterization of such compounds has proven difficult.”

Compounds 4d-4g are 1,3-disubstituted fulleropyrrolidines which may exist as either cis or trans
isomers. That compounds 4d, 4e and 4g exist as cis/trans mixtures is shown by 'H-NMR (table) and
HPLC.'® 'H-NMR of the cis-and trans- isomers showed distinctive chemical shifts for the pyrrolidine
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methine protons. The signals for the cis-isomers always appear further downfield than the corresponding
signals for the frans-isomers. (Assignments are based on the stereochemistry expected from steric effects on
the known azomethine ylide reaction mechanism, vida infra.) The cis-isomer of 4d shows a methine singlet
at 6.14 ppm and a methine quartet at 5.39 ppm, while the corresponding methines from trans-4d appear as
singlet at 5.86 ppm and a quartet at 5.01 ppm. Similarly, the pyrrolidine methine signals for cis-4e appears
as a singlet at 6.20 ppm and a doublet of doublets at 5.41 ppm. The spectrum of trans-de shows a singlet at

5.71 ppm, and a doublet of doublets at 5.04 ppm.

Figure 1. Computer models of cis-4g (a meso compound) and trans-4g (a C, symmetric d,/~compound.)

We have previously studied the resolution of chiral Cs, derivatives'' and thus had an interest in
compounds 4f and 4g. The cis-isomers of 4f or 4g are meso compounds, but the trans-isomers are chiral C,
symmetric racemic compounds (Figure 1). Unfortunately, the reaction leading to compound 4f gave a single
isomer as shown by HPLC'® and "H-NMR. This compound was assigned the cis-configuration based on its
'H-NMR spectrum which shows a (downfield) singlet at 6.04 ppm for the pyrrolidine -CH- protons. On the
other hand, compound 4g was formed as a 38/62 cis/trans-mixture by 'H-NMR and HPLC. The structure
assignments were again based on "H-NMR, where the more downfield methine signal (5.17 ppm vs. 4.80
ppm) was assigned to the cis-isomer.

' The observed differences in chemical yields for cis/trans- isomers could be due to relative stabilities
and reactivities of syn- vs. anti-ylides.'> Based on literature precedent, the frans- isomer must be formed
from the anti-ylide and the cis-isomer from the syn-ylide. The syn- and anti-ylides will probably equlibrate
before they are trapped by dipolarophiles and it has been suggested that bulky R groups favor formation of
the syn-ylides for steric reasons. > Our results are consistent with a steric argument since the proportion of

cis-compound increases in the series Me->PhCH,>Ph.
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In conclusion, we report a convenient synthesis of N-unsubstituted fulleropyrrolidines using readily

available amino acids as starting materials. Chiral, C; symmetric frans-1,3-disubstituted fulleropyrrolidines

are suitable for resolution and might be of interest in asymmetric catalysis.
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